Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(19): 13264-13287, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36136092

RESUMO

LIMKs are important regulators of actin and microtubule dynamics, and they play essential roles in many cellular processes. Deregulation of LIMKs has been linked to the development of diverse diseases, including cancers and cognitive disabilities, but well-characterized inhibitors known as chemical probes are still lacking. Here, we report the characterization of three highly selective LIMK1/2 inhibitors covering all canonical binding modes (type I/II/III) and the structure-based design of the type II/III inhibitors. Characterization of these chemical probes revealed a low nanomolar affinity for LIMK1/2, and all inhibitors 1 (LIMKi3; type I), 48 (TH470; type II), and 15 (TH257; type III) showed excellent selectivity in a comprehensive scanMAX kinase selectivity panel. Phosphoproteomics revealed remarkable differences between type I and type II inhibitors compared with the allosteric inhibitor 15. In phenotypic assays such as neurite outgrowth models of fragile X-chromosome, 15 showed promising activity, suggesting the potential application of allosteric LIMK inhibitors treating this orphan disease.


Assuntos
Actinas , Quinases Lim , Quinases Lim/genética , Quinases Lim/metabolismo , Sondas Moleculares
2.
Nat Commun ; 12(1): 4950, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400635

RESUMO

Upon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.


Assuntos
Receptores de Ativinas Tipo I/química , Receptores de Ativinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Transdução de Sinais/fisiologia , Receptores de Ativinas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Ligantes , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Domínios Proteicos , Hipertensão Arterial Pulmonar , Espalhamento a Baixo Ângulo , Transdução de Sinais/genética , Proteínas Smad/metabolismo , Difração de Raios X
3.
Acta Biochim Biophys Sin (Shanghai) ; 50(1): 106-120, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190314

RESUMO

The TGF-ß superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-ß superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-ßs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-ß superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-ß/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-ß/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-ß/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.


Assuntos
Transtornos Cognitivos/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Homeostase , Humanos , Modelos Neurológicos , Sistema Nervoso/metabolismo
4.
Sci Signal ; 10(477)2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465421

RESUMO

Fragile X syndrome (FXS) is the most common cause of heritable intellectual disability and autism and affects ~1 in 4000 males and 1 in 8000 females. The discovery of effective treatments for FXS has been hampered by the lack of effective animal models and phenotypic readouts for drug screening. FXS ensues from the epigenetic silencing or loss-of-function mutation of the fragile X mental retardation 1 (FMR1) gene, which encodes an RNA binding protein that associates with and represses the translation of target mRNAs. We previously found that the activation of LIM kinase 1 (LIMK1) downstream of augmented synthesis of bone morphogenetic protein (BMP) type 2 receptor (BMPR2) promotes aberrant synaptic development in mouse and Drosophila models of FXS and that these molecular and cellular markers were correlated in patients with FXS. We report that larval locomotion is augmented in a Drosophila FXS model. Genetic or pharmacological intervention on the BMPR2-LIMK pathway ameliorated the synaptic abnormality and locomotion phenotypes of FXS larvae, as well as hyperactivity in an FXS mouse model. Our study demonstrates that (i) the BMPR2-LIMK pathway is a promising therapeutic target for FXS and (ii) the locomotion phenotype of FXS larvae is a quantitative functional readout for the neuromorphological phenotype associated with FXS and is amenable to the screening novel FXS therapeutics.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Locomoção/fisiologia , Sinapses/patologia , Algoritmos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Comportamento Animal/efeitos dos fármacos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Drosophila/efeitos dos fármacos , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Ensaios de Triagem em Larga Escala , Larva/efeitos dos fármacos , Larva/fisiologia , Quinases Lim/antagonistas & inibidores , Quinases Lim/genética , Quinases Lim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Bibliotecas de Moléculas Pequenas/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
5.
Elife ; 62017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28072389

RESUMO

Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Proteína C9orf72/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila , Teste de Complementação Genética , Camundongos Knockout , Camundongos Transgênicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína FUS de Ligação a RNA/metabolismo
6.
Sci Signal ; 9(431): ra58, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273096

RESUMO

Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unclear. We found that the messenger RNA encoding bone morphogenetic protein type II receptor (BMPR2) is a target of FMRP. Depletion of FMRP increased BMPR2 abundance, especially that of the full-length isoform that bound and activated LIM domain kinase 1 (LIMK1), a component of the noncanonical BMP signal transduction pathway that stimulates actin reorganization to promote neurite outgrowth and synapse formation. Heterozygosity for BMPR2 rescued the morphological abnormalities in neurons both in Drosophila and in mouse models of FXS, as did the postnatal pharmacological inhibition of LIMK1 activity. Compared with postmortem prefrontal cortex tissue from healthy subjects, the amount of full-length BMPR2 and of a marker of LIMK1 activity was increased in this brain region from FXS patients. These findings suggest that increased BMPR2 signal transduction is linked to FXS and that the BMPR2-LIMK1 pathway is a putative therapeutic target in patients with FXS and possibly other forms of autism.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Síndrome do Cromossomo X Frágil/genética , Animais , Transtorno Autístico/genética , Encéfalo/metabolismo , Cofilina 1/metabolismo , Cruzamentos Genéticos , Drosophila melanogaster , Síndrome do Cromossomo X Frágil/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Heterozigoto , Humanos , Quinases Lim/metabolismo , Camundongos , Camundongos Knockout , Neuritos/metabolismo , Neurônios/metabolismo , Fosforilação , Plasmídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
7.
Crit Rev Biochem Mol Biol ; 51(3): 121-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26628006

RESUMO

MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs ("onco-miRs") as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs ("suppressor-miRs") are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/genética , Animais , Proteínas Argonautas/genética , Redes Reguladoras de Genes , Humanos , Processamento de Proteína Pós-Traducional , Ribonuclease III/genética , Transcrição Gênica
8.
J Mol Biol ; 427(16): 2663-78, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26143716

RESUMO

One-dimensional (1D) sliding of the tumor suppressor p53 along DNA is an essential dynamics required for its efficient search for the binding sites in the genome. To address how the search process of p53 is affected by the changes in the concentration of Mg(2+) and Ca(2+) after the cell damages, we investigated its sliding dynamics at different concentrations of the divalent cations. The 1D sliding trajectories of p53 along the stretched DNA were measured by using single-molecule fluorescence microscopy. The averaged diffusion coefficient calculated from the mean square displacement of p53 on DNA increased significantly at the higher concentration of Mg(2+) or Ca(2+), indicating that the divalent cations accelerate the sliding likely by weakening the DNA-p53 interaction. In addition, two distributions were identified in the displacement of the observed trajectories of p53, demonstrating the presence of the fast and slow sliding modes having large and small diffusion coefficients, respectively. A coreless mutant of p53, in which the core domain was deleted, showed only a single mode whose diffusion coefficient is about twice that of the fast mode for the full-length p53. Thus, the two modes are likely the result of the tight and loose interactions between the core domain of p53 and DNA. These results demonstrated clearly that the 1D sliding dynamics of p53 is strongly dependent on the concentration of Mg(2+) and Ca(2+), which maintains the search distance of p53 along DNA in cells that lost homeostatic control of the divalent cations.


Assuntos
Cálcio/química , DNA/metabolismo , Magnésio/química , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Difusão/efeitos dos fármacos , Polarização de Fluorescência , Humanos , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/genética
9.
Circ J ; 79(9): 2043-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26062950

RESUMO

BACKGROUND: Shock wave therapy (SWT) is an acoustic technology clinically used for the non-invasive treatment of ischemic heart disease (IHD). Therapeutic ultrasound (TUS) has more recently been developed for the same indication, although its effects on reperfusion and angiogenesis have yet to be directly compared to those of SWT. METHODS AND RESULTS: TUS and SWT acoustic parameters were matched, and their ability to promote angiogenesis and reperfusion in a rat hindlimb ischemia model was compared. After left femoral artery excision, 3-weekly TUS, SWT or sham treatments (n=10 rats each) of the left hindlimb were performed for 2 weeks. Laser Doppler perfusion imaging demonstrated improved perfusion with TUS (66±4% L:R hindlimb perfusion, mean±SEM, P=0.02), but not with SWT (59±4%, P=0.13) compared with sham (50±4%). Immunohistochemistry of CD31 demonstrated increased microvascular density with TUS (222.6 vessels/high-power field, P=0.001) and SWT (216.9, P=0.01) compared to sham-treated rats (196.0). Tissue vascular endothelial growth factor mRNA levels were elevated in the left hindlimb of TUS-, but not SWT- or sham-treated rats. CONCLUSIONS: Direct comparison demonstrates that TUS is more effective than SWT at promoting reperfusion, whereas both therapies promote angiogenesis in ischemic gastrocnemius muscle. These results suggest that TUS may be more effective than SWT for the treatment of IHD and peripheral arterial disease.


Assuntos
Ondas de Choque de Alta Energia , Neovascularização Fisiológica , Doença Arterial Periférica , Modalidades de Fisioterapia , Animais , Modelos Animais de Doenças , Feminino , Doença Arterial Periférica/fisiopatologia , Doença Arterial Periférica/terapia , Ratos , Ratos Sprague-Dawley
10.
EMBO J ; 32(24): 3192-205, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24219989

RESUMO

It is widely accepted that different forms of stress activate a common target, p53, yet different outcomes are triggered in a stress-specific manner. For example, activation of p53 by genotoxic agents, such as camptothecin (CPT), triggers apoptosis, while non-genotoxic activation of p53 by Nutlin-3 (Nut3) leads to cell-cycle arrest without significant apoptosis. Such stimulus-specific responses are attributed to differential transcriptional activation of various promoters by p53. In this study, we demonstrate that CPT, but not Nut3, induces miR-203, which downregulates anti-apoptotic bcl-w and promotes cell death in a p53-dependent manner. We find that acetylation of K120 in the DNA-binding domain of p53 augments its association with the Drosha microprocessor and promotes nuclear primary miRNA processing. Knockdown of human orthologue of Males absent On the First (hMOF), the acetyltransferase that targets K120 in p53, abolishes induction of miR-203 and cell death mediated by CPT. Thus, this study reveals that p53 acetylation at K120 plays a critical role in the regulation of the Drosha microprocessor and that post-transcriptional regulation of gene expression by p53 via miRNAs plays a role in determining stress-specific cellular outcomes.


Assuntos
Dano ao DNA , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Camptotecina/farmacologia , Sobrevivência Celular/genética , Células HCT116/efeitos dos fármacos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Imidazóis/metabolismo , MicroRNAs/genética , Piperazinas/metabolismo , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...